

 pylbm is an all-in-one package for numerical simulations using Lattice Boltzmann solvers.

This package gives all the tools to describe your lattice Boltzmann scheme in 1D, 2D and 3D problems.

We choose the D’Humières formalism to describe the problem. You can have complex geometry with a set of simple shape like circle, sphere, …

pylbm performs the numerical scheme using Cython, NumPy or Loo.py from the scheme and the domain given by the user. Pythran and Numba wiil be available soon. pylbm has MPI support with mpi4py.

Installation

You can install pylbm in several ways

With conda

conda install pylbm -c conda-forge

With Pypi

pip install pylbm

or

pip install pylbm --user

From source

You can also clone the project and install the latest version

git clone https://github.com/pylbm/pylbm

To install pylbm from source, we encourage you to create a fresh environment using conda.

conda create -n pylbm_env python=3.6

As mentioned at the end of the creation of this environment, you can activate it
using the comamnd line

conda activate pylbm_env

Now, you just have to go into the pylbm directory that you cloned and install
the dependencies

conda install --file requirements-dev.txt -c conda-forge

and then, install pylbm

python setup.py install

Getting started

pylbm can be a simple way to make numerical simulations
by using the Lattice Boltzmann method.

Once the package is installed
you just have to understand how to build a dictionary that will be
understood by pylbm to perform the simulation.
The dictionary should contain all the needed informations as

	the geometry (see here for documentation)

	the scheme (see here for documentation)

	another informations like the space step, the scheme velocity, the generator
of the functions…

To understand how to use pylbm, you have a lot of Python notebooks
in the tutorial.

Documentation for users

	The geometry of the simulation

	The domain of the simulation

	The scheme

	The scheme analysis

	The storage of moments and distribution functions

	Learning by examples

You can also find other examples in the gallery.

Documentation of the code

The most important classes

	Geometry(dico[, need_validation])

	Create a geometry that defines the fluid part and the solid part.

	Domain(dico[, need_validation])

	Create a domain that defines the fluid part and the solid part and computes the distances between these two states.

	Scheme(dico[, check_inverse, need_validation])

	Create the class with all the needed informations for each elementary scheme.

	Simulation(dico[, sorder, dtype, check_inverse])

	create a class simulation

The modules

	stencil

	elements

	geometry

	domain

	bounds

	algorithms

	storage

References

	dH92

	D. D’HUMIERES, Generalized Lattice-Boltzmann Equations,
Rarefied Gas Dynamics: Theory and Simulations, 159, pp. 450-458,
AIAA Progress in astronomics and aeronautics (1992).

	D08

	F. DUBOIS, Equivalent partial differential equations of a lattice Boltzmann scheme,
Computers and Mathematics with Applications, 55, pp. 1441-1449 (2008).

	G14

	B. GRAILLE, Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method,
Journal of Comutational Physics, 266 (3179757), pp. 74-88 (2014).

	QdHL92

	Y.H. QIAN, D. D’HUMIERES, and P. LALLEMAND,
Lattice BGK Models for Navier-Stokes Equation, Europhys. Lett., 17 (6), pp. 479-484 (1992).

Indices and tables

	Index

	Search Page

The Geometry of the simulation

With pylbm, the numerical simulations can be performed in a domain
with a complex geometry. This geometry is construct without considering a
particular mesh but only with geometrical objects.
All the geometrical informations are defined through a dictionary and
put into an object of the class Geometry.

First, the domain is put into a box: a segment in 1D, a rectangle in 2D, and
a rectangular parallelepipoid in 3D.

Then, the domain is modified by adding or deleting some elementary shapes.
In 2D, the elementary shapes are

	a Circle

	an Ellipse

	a Parallelogram

	a Triangle

From version 0.2, the geometrical elements are implemented in 3D.
The elementary shapes are

	a Sphere

	an Ellipsoid

	a Parallelepiped

	a Cylinder with a 2D-base

	Cylinder (Circle)

	Cylinder (Ellipse)

	Cylinder (Triangle)

Several examples of geometries can be found in
demo/examples/geometry/

Examples in 1D

script

The segment \([0, 1]\)

d = {'box':{'x': [0, 1], 'label': [0, 1]}}
g = pylbm.Geometry(d)
g.visualize(viewlabel = True)

(Source code, png, pdf)

[image: _images/geometry_1D_segment.png]

The segment \([0,1]\) is created by the dictionary with the key box.
We then add the labels 0 and 1 on the edges with the key label.
The result is then visualized with the labels by using the method
visualize.
If no labels are given in the dictionary, the default value is -1.

Examples in 2D

script

The square \([0,1]^2\)

d = {'box':{'x': [0, 1], 'y': [0, 1]}}
g = pylbm.Geometry(d)
g.visualize()

(Source code, png, pdf)

[image: _images/geometry_2D_square.png]

The square \([0,1]^2\) is created by the dictionary with the key box.
The result is then visualized by using the method
visualize.

We then add the labels on each edge of the square
through a list of integers with the conventions:

	
	first for the left (\(x=x_{\operatorname{min}}\))

	third for the bottom (\(y=y_{\operatorname{min}}\))

	
	second for the right (\(x=x_{\operatorname{max}}\))

	fourth for the top (\(y=y_{\operatorname{max}}\))

d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':[0, 1, 2, 3]}}
g = pylbm.Geometry(d)
g.visualize(viewlabel = True)

(Source code, png, pdf)

[image: _images/geometry_2D_square_label.png]

If all the labels have the same value, a shorter solution is to
give only the integer value of the label instead of the list.
If no labels are given in the dictionary, the default value is -1.

script 3
script 2
script 1

A square with a hole

The unit square \([0,1]^2\) can be holed with a circle (script 1)
or with a triangular or with a parallelogram (script 3)

In the first example,
a solid disc lies in the fluid domain defined by
a circle
with a center of (0.5, 0.5) and a radius of 0.125

d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
 'elements':[pylbm.Circle((.5, .5), .125, label = 1)],
}
g = pylbm.Geometry(d)
g.visualize(viewlabel=True)

(Source code, png, pdf)

[image: _images/geometry_2D_square_hole.png]

The dictionary of the geometry then contains an additional key elements
that is a list of elements.
In this example, the circle is labelized by 1 while the edges of the square by 0.

The element can be also a triangle

d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
 'elements':[pylbm.Triangle((0.,0.), (0.,.5), (.5, 0.), label = 1)],
}
g = pylbm.Geometry(d)
g.visualize(viewlabel=True)

(Source code, png, pdf)

[image: _images/geometry_2D_square_triangle.png]

or a parallelogram

d = {'box':{'x': [0, 3], 'y': [0, 1], 'label':[1, 2, 0, 0]},
 'elements':[pylbm.Parallelogram((0.,0.), (.5,0.), (0., .5), label = 0)],
}
g = pylbm.Geometry(d)
g.visualize()

(Source code, png, pdf)

[image: _images/geometry_2D_square_parallelogram.png]

script

A complex cavity

A complex geometry can be build by using a list of elements. In this example,
the box is fixed to the unit square \([0,1]^2\). A square hole is added with the
argument isfluid=False. A strip and a circle are then added with the argument
isfluid=True. Finally, a square hole is put. The value of elements
contains the list of all the previous elements. Note that the order of
the elements in the list is relevant.

square = pylbm.Parallelogram((.1, .1), (.8, 0), (0, .8), isfluid=False)
strip = pylbm.Parallelogram((0, .4), (1, 0), (0, .2), isfluid=True)
circle = pylbm.Circle((.5, .5), .25, isfluid=True)
inner_square = pylbm.Parallelogram((.4, .5), (.1, .1), (.1, -.1), isfluid=False)
d = {'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
 'elements':[square, strip, circle, inner_square],
}
g = pylbm.Geometry(d)
g.visualize()

Once the geometry is built, it can be modified by adding or deleting
other elements. For instance, the four corners of the cavity can be rounded
in this way.

g.add_elem(pylbm.Parallelogram((0.1, 0.9), (0.05, 0), (0, -0.05), isfluid=True))
g.add_elem(pylbm.Circle((0.15, 0.85), 0.05, isfluid=False))
g.add_elem(pylbm.Parallelogram((0.1, 0.1), (0.05, 0), (0, 0.05), isfluid=True))
g.add_elem(pylbm.Circle((0.15, 0.15), 0.05, isfluid=False))
g.add_elem(pylbm.Parallelogram((0.9, 0.9), (-0.05, 0), (0, -0.05), isfluid=True))
g.add_elem(pylbm.Circle((0.85, 0.85), 0.05, isfluid=False))
g.add_elem(pylbm.Parallelogram((0.9, 0.1), (-0.05, 0), (0, 0.05), isfluid=True))
g.add_elem(pylbm.Circle((0.85, 0.15), 0.05, isfluid=False))
g.visualize()

(Source code)

[image: _images/geometry_2D_cavity_00.png]
(png, pdf)

[image: _images/geometry_2D_cavity_01.png]
(png, pdf)

Examples in 3D

script

The cube \([0,1]^3\)

d = {'box':{'x': [0, 1], 'y': [0, 1], 'z':[0, 1], 'label':list(range(6))}}
g = pylbm.Geometry(d)
g.visualize(viewlabel=True)

(Source code)

The cube \([0,1]^3\) is created by the dictionary with the key box.
The result is then visualized by using the method
visualize.

We then add the labels on each edge of the square
through a list of integers with the conventions:

	
	first for the left (\(x=x_{\operatorname{min}}\))

	third for the bottom (\(y=y_{\operatorname{min}}\))

	fifth for the front (\(z=z_{\operatorname{min}}\))

	
	second for the right (\(x=x_{\operatorname{max}}\))

	fourth for the top (\(y=y_{\operatorname{max}}\))

	sixth for the back (\(z=z_{\operatorname{max}}\))

If all the labels have the same value, a shorter solution is to
give only the integer value of the label instead of the list.
If no labels are given in the dictionary, the default value is -1.

The cube \([0,1]^3\) with a hole

d = {
 'box':{'x': [0, 1], 'y': [0, 1], 'z':[0, 1], 'label':0},
 'elements':[pylbm.Sphere((.5,.5,.5), .25, label=1)],
}
g = pylbm.Geometry(d)
g.visualize(viewlabel=True)

(Source code)

The cube \([0,1]^3\) and the spherical hole are created
by the dictionary with the keys box and elements.
The result is then visualized by using the method
visualize.

The Domain of the simulation

With pylbm, the numerical simulations can be performed in a domain
with a complex geometry.
The creation of the geometry from a dictionary is explained here.
All the informations needed to build the domain are defined through a dictionary
and put in a object of the class Domain.

The domain is built from three types of informations:

	a geometry (class Geometry),

	a stencil (class Stencil),

	a space step (a float for the grid step of the simulation).

The domain is a uniform cartesian discretization of the geometry with a grid step
\(dx\). The whole box is discretized even if some elements are added to reduce
the domain of the computation.
The stencil is necessary in order to know the maximal velocity in each direction
so that the corresponding number of phantom cells are added at the borders of
the domain (for the treatment of the boundary conditions).
The user can get the coordinates of the points in the domain by the fields
x, y, and z.
By convention, if the spatial dimension is one, y=z=None; and if it is two, z=None.

Several examples of domains can be found in
demo/examples/domain/

Examples in 1D

script

The segment \([0, 1]\) with a \(D_1Q_3\)

dico = {
 'box':{'x': [0, 1], 'label':0},
 'space_step':0.1,
 'schemes':[{'velocities':list(range(3))}],
}
dom = pylbm.Domain(dico)
dom.visualize()

(Source code, png, pdf)

[image: _images/domain_D1Q3_segment.png]

The segment \([0,1]\) is created by the dictionary with the key box.
The stencil is composed by the velocity \(v_0=0\), \(v_1=1\), and
\(v_2=-1\). One phantom cell is then added at the left and at the right of
the domain.
The space step \(dx\) is taken to \(0.1\) to allow the visualization.
The result is then visualized with the distance of the boundary points
by using the method
visualize.

script

The segment \([0, 1]\) with a \(D_1Q_5\)

dico = {
 'box':{'x': [0, 1], 'label':0},
 'space_step':0.1,
 'schemes':[{'velocities':list(range(5))}],
}
dom = pylbm.Domain(dico)
dom.visualize()

(Source code, png, pdf)

[image: _images/domain_D1Q5_segment.png]

The segment \([0,1]\) is created by the dictionary with the key box.
The stencil is composed by the velocity \(v_0=0\), \(v_1=1\),
\(v_2=-1\), \(v_3=2\), \(v_4=-2\).
Two phantom cells are then added at the left and at the right of
the domain.
The space step \(dx\) is taken to \(0.1\) to allow the visualization.
The result is then visualized with the distance of the boundary points
by using the method
visualize.

Examples in 2D

script

The square \([0,1]^2\) with a \(D_2Q_9\)

dico = {
 'box':{'x': [0, 1], 'y': [0, 1], 'label':0},
 'space_step':0.1,
 'schemes':[{'velocities':list(range(9))}],
}
dom = pylbm.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True)

(Source code)

[image: _images/domain_D2Q9_square_00.png]
(png, pdf)

[image: _images/domain_D2Q9_square_01.png]
(png, pdf)

The square \([0,1]^2\) is created by the dictionary with the key box.
The stencil is composed by the nine velocities

\begin{equation}
\begin{gathered}
v_0=(0,0),\\
v_1=(1,0), v_2=(0,1), v_3=(-1,0), v_4=(0,-1),\\
v_5=(1,1), v_6=(-1,1), v_7=(-1,-1), v_8=(1,-1).
\end{gathered}
\end{equation}
One phantom cell is then added all around the square.
The space step \(dx\) is taken to \(0.1\) to allow the visualization.
The result is then visualized by using the method
visualize.
This method can be used without parameter: the domain is visualize in white
for the fluid part (where the computation is done) and in black for the solid part
(the phantom cells or the obstacles).
An optional parameter view_distance can be used to visualize more precisely the
points (a black circle inside the domain and a square outside). Color lines are added
to visualize the position of the border: for each point that can reach the border
for a given velocity in one time step, the distance to the border is computed.

script 1

A square with a hole with a \(D_2Q_{13}\)

The unit square \([0,1]^2\) can be holed with a circle.
In this example,
a solid disc lies in the fluid domain defined by
a circle
with a center of (0.5, 0.5) and a radius of 0.125

dico = {
 'box':{'x': [0, 2], 'y': [0, 1], 'label':0},
 'elements':[pylbm.Circle((0.5,0.5), 0.2)],
 'space_step':0.05,
 'schemes':[{'velocities':list(range(13))}],
}
dom = pylbm.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True)

(Source code)

[image: _images/domain_D2Q13_square_hole_00.png]
(png, pdf)

[image: _images/domain_D2Q13_square_hole_01.png]
(png, pdf)

script

A step with a \(D_2Q_9\)

A step can be build by removing a rectangle in the left corner.
For a \(D_2Q_9\), it gives the following domain.

dico = {
 'box':{'x': [0, 3], 'y': [0, 1], 'label':0},
 'elements':[pylbm.Parallelogram((0.,0.), (.5,0.), (0., .5), label=1)],
 'space_step':0.125,
 'schemes':[{'velocities':list(range(9))}],
}
dom = pylbm.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True, label=1)

(Source code)

[image: _images/domain_D2Q9_step_00.png]
(png, pdf)

[image: _images/domain_D2Q9_step_01.png]
(png, pdf)

Note that the distance with the bound is visible only for the specified labels.

Examples in 3D

script

The cube \([0,1]^3\) with a \(D_3Q_{19}\)

dico = {
 'box':{'x': [0, 2], 'y': [0, 2], 'z':[0, 2], 'label':0},
 'space_step':.5,
 'schemes':[{'velocities':list(range(19))}]
}
dom = pylbm.Domain(dico)
dom.visualize()
dom.visualize(view_distance=True)

(Source code)

The cube \([0,1]^3\) is created by the dictionary with the key box
and the first 19th velocities.
The result is then visualized by using the method
visualize.

The cube with a hole with a \(D_3Q_{19}\)

dico = {
 'box':{'x': [0, 2], 'y': [0, 2], 'z':[0, 2], 'label':0},
 'elements':[pylbm.Sphere((1,1,1), 0.5, label = 1)],
 'space_step':.5,
 'schemes':[{'velocities':list(range(19))}]
}
dom = pylbm.Domain(dico)
dom.visualize()
dom.visualize(view_distance=False, view_bound=True, label=1, view_in=False, view_out=False)

(Source code)

The Scheme

With pylbm, elementary schemes can be gathered and coupled through the
equilibrium in order to simplify the implementation of the vectorial schemes.
Of course, the user can implement a single elementary scheme and then recover the
classical framework of the d’Humières schemes.

For pylbm, the scheme is performed
through a dictionary. The generalized d’Humières framework for vectorial schemes
is used [dH92], [G14]. In the first section, we describe how build an elementary scheme. Then
the vectorial schemes are introduced as coupled elementary schemes.

The elementary schemes

Let us first consider a regular lattice \(L\) in dimension \(d\)
with a typical mesh size \(dx\), and the time step \(dt\).
The scheme velocity \(\lambda\) is then defined by
\(\lambda = dx/dt\).
We introduce a set of \(q\) velocities adapted to this lattice
\(\{v_0, \ldots, v_{q-1}\}\), that is
to say that, if \(x\) is a point of the lattice \(L\), the point
\(x+v_jdt\) is on the lattice for every \(j\in\{0,\ldots,q{-}1\}\).

The aim of the \(DdQq\) scheme is to compute a distribution function
vector \({\boldsymbol f} = (f_0,\ldots,f_{q-1})\) on the lattice
\(L\) at discret values of time.
The scheme splits into two phases:
the relaxation and the transport. That is, the passage from the time \(t\)
to the time \(t+dt\) consists in the succession of these two phases.

	the relaxation phase

This phase, also called collision, is local in space:
on every site \(x\) of the lattice,
the values of the vector \({\boldsymbol f}\) are modified,
the result after the collision being denoted by
\({\boldsymbol f}^\star\).
The operator of collision is a linear operator of relaxation
toward an equilibrium value denoted
\({\boldsymbol f}^{\textrm{eq}}\).

pylbm uses the framework of d’Humières: the linear operator of the collision
is diagonal in a special basis called moments denoted by
\({\boldsymbol m} = (m_0,\ldots,m_{q-1})\).
The change-of-basis matrix \(M\) is such that
\({\boldsymbol m} = M{\boldsymbol f}\)
and
\({\boldsymbol f} = M^{-1}{\boldsymbol m}\).
In the basis of the moments, the collision operator then just reads

\begin{equation*}
m_k^\star = m_k - s_k (m_k - m_k^{\textrm{eq}}),
\qquad
0\leqslant k\leqslant q{-}1,
\end{equation*}
where \(s_k\) is the relaxation parameter associated to the kth moment.
The kth moment is said conserved during the collision
if the associated relaxation parameter \(s_k=0\).

By analogy with the kinetic theory,
the change-of-basis matrix \(M\) is defined by a set of polynomials
with \(d\) variables \((P_0,\ldots,P_{q-1})\) by

\begin{equation*}
M_{ij} = P_i(v_j).
\end{equation*}

	the transport phase

This phase just consists in a shift of the indices and reads

\begin{equation*}
f_j(x, t+dt) = f_j^\star(x-v_jdt, t),
\qquad
0\leqslant j\leqslant q{-}1,
\end{equation*}

Notations

The scheme is defined and build
through a dictionary in pylbm. Let us first list the several key words
of this dictionary:

	dim: the spatial dimension. This argument is optional if the geometry is
known, that is if the dimension can be computed through the list of the variables;

	scheme_velocity: the velocity of the scheme denoted by \(\lambda\) in the
previous section and defined as the spatial step over the time step
(\(\lambda=dx/dt\)) ;

	schemes: the list of the schemes. In pylbm, several coupled schemes can be used,
the coupling being done through the equilibrium values of the moments.
Some examples with only one scheme and with more than one schemes are given in the next sections.
Each element of the list should be a dictionay with the following key words:

	velocities: the list of the velocity indices,

	conserved_moments: the list of the conserved moments (list of symbolic variables),

	polynomials: the list of the polynomials that define the moments, the polynomials are built with the symbolic variables X, Y, and Z,

	equilibrium: the list of the equilibrium value of the moments,

	relaxation_parameters: the list of the relaxation parameters, (by convention, the relaxation parameter of a conserved moment is taken to 0).

Examples in 1D

script

\(D_1Q_2\) for the advection

A velocity \(c\in{\mathbb R}\) being given, the advection equation reads

\begin{equation*}
\partial_t u(t,x) + c \partial_x u(t,x) = 0, \qquad t>0, x\in{\mathbb R}.
\end{equation*}
Taken for instance \(c=0.5\), the following scheme can be used:

import sympy as sp
import pylbm
u, X = sp.symbols('u, X')

d = {
 'dim':1,
 'scheme_velocity':1.,
 'schemes':[
 {
 'velocities': [1, 2],
 'conserved_moments':u,
 'polynomials': [1, X],
 'equilibrium': [u, .5*u],
 'relaxation_parameters': [0., 1.9],
 },
],
}
s = pylbm.Scheme(d)
print(s)

The dictionary d is used to set the dimension to 1,
the scheme velocity to 1. The used scheme has two velocities:
the first one \(v_0=1\) and the second one \(v_1=-1\).
The polynomials that define the moments are
\(P_0 = 1\) and \(P_1 = X\) so that
the matrix of the moments is

\begin{equation*} M =
\begin{pmatrix}
1&1\\ 1&-1
\end{pmatrix}
\end{equation*}
with the convention \(M_{ij} = P_i(v_j)\).
Then, there are two distribution functions \(f_0\) and
\(f_1\) that move at the velocities \(v_0\) and \(v_1\),
and two moments \(m_0 = f_0+f_1\) and \(m_1 = f_0-f_1\).
The first moment \(m_0\) is conserved during the relaxation phase
(as the associated relaxation parameter is set to 0),
while the second moment \(m_1\) relaxes to its equilibrium value
\(0.5m_0\) with a relaxation parameter \(1.9\) by the relation

\begin{equation*}
m_1^\star = m_1 - 1.9 (m_1 - 0.5m_0).
\end{equation*}
script

\(D_1Q_2\) for Burger’s

The Burger’s equation reads

\begin{equation*}
\partial_t u(t,x) + \tfrac{1}{2}\partial_x u^2(t,x) = 0, \qquad t>0, x\in{\mathbb R}.
\end{equation*}
The following scheme can be used:

import sympy as sp
import pylbm
u, X = sp.symbols('u, X')

d = {
 'dim':1,
 'scheme_velocity':1.,
 'schemes':[
 {
 'velocities': [1, 2],
 'conserved_moments':u,
 'polynomials': [1, X],
 'equilibrium': [u, .5*u**2],
 'relaxation_parameters': [0., 1.9],
 },
],
}
s = pylbm.Scheme(d)
print(s)

The same dictionary has been used for this application with only one
modification: the equilibrium value of the second moment
\(m_1^{\textrm{eq}}\) is taken to \(\tfrac{1}{2}m_0^2\).

script

\(D_1Q_3\) for the wave equation

The wave equation is rewritten into the system of two partial differential equations

\begin{equation*}
\left\{
\begin{aligned}
&\partial_t u(t, x) + \partial_x v(t, x) = 0, & t>0, x\in{\mathbb R},\\
&\partial_t v(t, x) + c^2\partial_x u(t, x) = 0, & t>0, x\in{\mathbb R}.
\end{aligned}
\right.
\end{equation*}
The following scheme can be used:

import sympy as sp
import pylbm
u, v, X = sp.symbols('u, v, X')

c = 0.5
d = {
 'dim':1,
 'scheme_velocity':1.,
 'schemes':[{
 'velocities': [0, 1, 2],
 'conserved_moments':[u, v],
 'polynomials': [1, X, 0.5*X**2],
 'equilibrium': [u, v, .5*c**2*u],
 'relaxation_parameters': [0., 0., 1.9],
 },
],
}
s = pylbm.Scheme(d)
print(s)

Examples in 2D

script

\(D_2Q_4\) for the advection

A velocity \((c_x, c_y)\in{\mathbb R}^2\) being given,
the advection equation reads

\begin{equation*}
\partial_t u(t, x, y) +
c_x \partial_x u(t, x, y) +
c_y \partial_y u(t, x, y) = 0,
\qquad t>0, x, y \in{\mathbb R}.
\end{equation*}
Taken for instance \(c_x=0.1, c_y=0.2\), the following scheme can be used:

import sympy as sp
import pylbm
u, X, Y = sp.symbols('u, X, Y')

d = {
 'dim':2,
 'scheme_velocity':1.,
 'schemes':[{
 'velocities': [1, 2, 3, 4],
 'conserved_moments':u,
 'polynomials': [1, X, Y, X**2-Y**2],
 'equilibrium': [u, .1*u, .2*u, 0.],
 'relaxation_parameters': [0., 1.9, 1.9, 1.4],
 },
],
}
s = pylbm.Scheme(d)
print(s)

The dictionary d is used to set the dimension to 2,
the scheme velocity to 1. The used scheme has four velocities:
\(v_0=(1,0)\), \(v_1=(0,1)\), \(v_2=(-1,0)\), and
\(v_3=(0,-1)\).
The polynomials that define the moments are
\(P_0 = 1\), \(P_1 = X\), \(P_2 = Y\), and
\(P_3 = X^2-Y^2\) so that
the matrix of the moments is

\begin{equation*} M =
\begin{pmatrix}
1&1&1&1\\ 1&0&-1&0\\ 0&1&0&-1\\ 1&-1&1&-1
\end{pmatrix}
\end{equation*}
with the convention \(M_{ij} = P_i(v_j)\).
Then, there are four distribution functions \(f_j, 0\leq j\leq 3\)
that move at the velocities \(v_j\),
and four moments \(m_k = \sum_{j=0}^3 M_{kj}f_j\).
The first moment \(m_0\) is conserved during the relaxation phase
(as the associated relaxation parameter is set to 0),
while the other moments \(m_k, 1\leq k\leq 3\) relaxe to their equilibrium values
by the relations

\begin{equation*}
\left\{
\begin{aligned}
m_1^\star &= m_1 - 1.9 (m_1 - 0.1m_0),\\
m_2^\star &= m_2 - 1.9 (m_2 - 0.2m_0),\\
m_3^\star &= (1-1.4)m_3.
\end{aligned}
\right.
\end{equation*}
script

\(D_2Q_9\) for Navier-Stokes

The system of the compressible Navier-Stokes equations
reads

\begin{equation*}
\left\{
\begin{aligned}
&\partial_t \rho + \nabla{\cdot}(\rho {\boldsymbol u}) = 0,\\
&\partial_t (\rho {\boldsymbol u}) + \nabla{\cdot}(\rho {\boldsymbol u}{\otimes}{\boldsymbol u})
+ \nabla p = \kappa \nabla (\nabla{\cdot}{\boldsymbol u}) + \eta \nabla{\cdot}
\bigl(\nabla{\boldsymbol u} + (\nabla{\boldsymbol u})^T - \nabla{\cdot}{\boldsymbol u}{\mathbb I}\bigr),
\end{aligned}
\right.
\end{equation*}
where we removed the dependency of all unknown on the variables \((t, x, y)\).
The vector \({\boldsymbol x}\) stands for \((x, y)\) and,
if \(\psi\) is a scalar function of \({\boldsymbol x}\) and
\({\boldsymbol\phi}=(\phi_x,\phi_y)\)
is a vectorial function of \({\boldsymbol x}\),
the usual partial differential operators read

\begin{equation*}
\begin{aligned}
&\nabla\psi = (\partial_x\psi, \partial_y\psi),\\
&\nabla{\cdot}{\boldsymbol\phi} = \partial_x\phi_x + \partial_y\phi_y,\\
&\nabla{\cdot}({\boldsymbol\phi}{\otimes}{\boldsymbol\phi}) = (\nabla{\cdot}(\phi_x{\boldsymbol\phi}), \nabla{\cdot}(\phi_y{\boldsymbol\phi})).
\end{aligned}
\end{equation*}
The coefficients \(\kappa\) and \(\eta\) are the bulk and the shear viscosities.

The following dictionary can be used to simulate the system of Navier-Stokes equations
in the limit of small velocities:

from six.moves import range
import sympy as sp
import pylbm
rho, qx, qy, X, Y = sp.symbols('rho, qx, qy, X, Y')

dx = 1./256 # space step
eta = 1.25e-5 # shear viscosity
kappa = 10*eta # bulk viscosity
sb = 1./(.5+kappa*3./dx)
ss = 1./(.5+eta*3./dx)
d = {
 'dim':2,
 'scheme_velocity':1.,
 'schemes':[{
 'velocities':list(range(9)),
 'conserved_moments':[rho, qx, qy],
 'polynomials':[
 1, X, Y,
 3*(X**2+Y**2)-4,
 (9*(X**2+Y**2)**2-21*(X**2+Y**2)+8)/2,
 3*X*(X**2+Y**2)-5*X, 3*Y*(X**2+Y**2)-5*Y,
 X**2-Y**2, X*Y
],
 'relaxation_parameters':[0., 0., 0., sb, sb, sb, sb, ss, ss],
 'equilibrium':[
 rho, qx, qy,
 -2*rho + 3*qx**2 + 3*qy**2,
 rho + 3/2*qx**2 + 3/2*qy**2,
 -qx, -qy,
 qx**2 - qy**2, qx*qy
],
 },],
}
s = pylbm.Scheme(d)
print(s)

The scheme generated by the dictionary is the 9 velocities scheme with orthogonal
moments introduced in [QdHL92]

Examples in 3D

script

\(D_3Q_6\) for the advection

A velocity \((c_x, c_y, c_z)\in{\mathbb R}^2\) being given,
the advection equation reads

\begin{equation*}
\partial_t u(t, x, y, z) +
c_x \partial_x u(t, x, y, z) +
c_y \partial_y u(t, x, y, z) +
c_z \partial_z u(t, x, y, z) = 0,
\quad t>0, x, y, z \in{\mathbb R}.
\end{equation*}
Taken for instance \(c_x=0.1, c_y=-0.1, c_z=0.2\), the following scheme can be used:

from six.moves import range
import sympy as sp
import pylbm
u, X, Y, Z = sp.symbols('u, X, Y, Z')

cx, cy, cz = .1, -.1, .2
d = {
 'dim':3,
 'scheme_velocity':1.,
 'schemes':[{
 'velocities': list(range(1,7)),
 'conserved_moments':u,
 'polynomials': [1, X, Y, Z, X**2-Y**2, X**2-Z**2],
 'equilibrium': [u, cx*u, cy*u, cz*u, 0., 0.],
 'relaxation_parameters': [0., 1.5, 1.5, 1.5, 1.5, 1.5],
 },],
}
s = pylbm.Scheme(d)
print(s)

The dictionary d is used to set the dimension to 3,
the scheme velocity to 1. The used scheme has six velocities:
\(v_0=(0,0,1)\),
\(v_1=(0,0,-1)\),
\(v_2=(0,1,0)\),
\(v_3=(0,-1,0)\),
\(v_4=(1,0,0)\), and
\(v_5=(-1,0,0)\).
The polynomials that define the moments are
\(P_0 = 1\), \(P_1 = X\), \(P_2 = Y\), \(P_3 = Z\),
\(P_4 = X^2-Y^2\), and \(P_5 = X^2-Z^2\) so that
the matrix of the moments is

\begin{equation*} M =
\begin{pmatrix}
1&1&1&1&1&1\\
0&0&0&0&1&-1\\
0&0&1&-1&0&0\\
1&-1&0&0&0&0\\
0&0&-1&-1&1&1\\
-1&-1&0&0&1&1
\end{pmatrix}
\end{equation*}
with the convention \(M_{ij} = P_i(v_j)\).
Then, there are six distribution functions \(f_j, 0\leq j\leq 5\)
that move at the velocities \(v_j\),
and six moments \(m_k = \sum_{j=0}^5 M_{kj}f_j\).
The first moment \(m_0\) is conserved during the relaxation phase
(as the associated relaxation parameter is set to 0),
while the other moments \(m_k, 1\leq k\leq 5\) relaxe to their equilibrium values
by the relations

\begin{equation*}
\left\{
\begin{aligned}
m_1^\star &= m_1 - 1.5 (m_1 - 0.1m_0),\\
m_2^\star &= m_2 - 1.5 (m_2 + 0.1m_0),\\
m_3^\star &= m_3 - 1.5 (m_3 - 0.2m_0),\\
m_4^\star &= (1-1.5)m_4,\\
m_5^\star &= (1-1.5)m_5.
\end{aligned}
\right.
\end{equation*}

The vectorial schemes

With pylbm, vectorial schemes can be built easily by using a list of elementary schemes.
Each elementary scheme is given by a dictionary as in the previous section.
The conserved moments of all the elementary schemes can be used in the equilibrium values of the non conserved moments,
in order to couple the schemes. For more details on the vectorial schemes,
the reader can refer to [G14].

Examples in 1D

script

\(D_1Q_{2,2}\) for the shallow water equation

A constant \(g\in{\mathbb R}\) being given, the shallow water system reads

\begin{align*}
&\partial_t h(t,x) + \partial_x q(t,x) = 0, &\qquad t>0, x\in{\mathbb R},\\
&\partial_t q(t,x) + \partial_x \bigl(q^2(t,x)/h(t,x) + gh^2(t,x)/2\bigr) = 0, &\qquad t>0, x\in{\mathbb R}.
\end{align*}
Taken for instance \(g=1\), the following scheme can be used:

import sympy as sp
import pylbm

parameters
h, q, X, LA, g = sp.symbols('h, q, X, LA, g')
la = 2. # velocity of the scheme
s_h, s_q = 1.7, 1.5 # relaxation parameters

d = {
 'dim': 1,
 'scheme_velocity': la,
 'schemes':[
 {
 'velocities': [1, 2],
 'conserved_moments': h,
 'polynomials': [1, LA*X],
 'relaxation_parameters': [0, s_h],
 'equilibrium': [h, q],
 },
 {
 'velocities': [1, 2],
 'conserved_moments': q,
 'polynomials': [1, LA*X],
 'relaxation_parameters': [0, s_q],
 'equilibrium': [q, q**2/h+.5*g*h**2],
 },
],
 'parameters': {LA: la, g: 1.},
}
s = pylbm.Scheme(d)
print(s)

Two elementary schemes have been built, these two schemes are identical
except for the equilibrium values of the non conserved moment and of the relaxation parameter:
The first one is used to simulate the equation on \(h\) and the second one
to simulate the equation on \(q\).
For each scheme, the equilibrium value of the non conserved moment is equal
to the flux of the corresponding equation: the equilibrium value of the kth scheme
can so depend on all the conserved moments (and not only on those of the kth scheme).

Examples in 2D

script

\(D_2Q_{4,4,4}\) for the shallow water equation

A constant \(g\in{\mathbb R}\) being given, the shallow water system reads

\begin{align*}
&\partial_t h(t,x,y) + \partial_x q_x(t,x,y) + \partial_y q_y(t,x,y) = 0, &\qquad t>0, x,y\in{\mathbb R},\\
&\partial_t q_x(t,x,y) + \partial_x \bigl(q_x^2(t,x,y)/h(t,x,y) + gh^2(t,x,y)/2\bigr) \\
& + \partial_y \bigl(q_x(t,x,y)q_y(t,x,y)/h(t,x,y)\bigr) = 0, &\qquad t>0, x,y\in{\mathbb R},\\
&\partial_t q_y(t,x,y) + \partial_x \bigl(q_x(t,x,y)q_y(t,x,y)/h(t,x,y)\bigr)\\
& + \partial_y \bigl(q_y^2(t,x,y)/h(t,x,y) + gh^2(t,x,y)/2\bigr) = 0, &\qquad t>0, x,y\in{\mathbb R}.
\end{align*}
Taken for instance \(g=1\), the following scheme can be used:

import sympy as sp
import pylbm

X, Y, LA, g = sp.symbols('X, Y, LA, g')
h, qx, qy = sp.symbols('h, qx, qy')

parameters
la = 4 # velocity of the scheme
s_h = [0., 2., 2., 1.5]
s_q = [0., 1.5, 1.5, 1.2]

vitesse = [1,2,3,4]
polynomes = [1, LA*X, LA*Y, X**2-Y**2]

d = {
 'dim': 2,
 'scheme_velocity': la,
 'schemes':[
 {
 'velocities': vitesse,
 'conserved_moments': h,
 'polynomials': polynomes,
 'relaxation_parameters': s_h,
 'equilibrium': [h, qx, qy, 0.],
 },
 {
 'velocities': vitesse,
 'conserved_moments': qx,
 'polynomials': polynomes,
 'relaxation_parameters': s_q,
 'equilibrium': [qx, qx**2/h + 0.5*g*h**2, qx*qy/h, 0.],
 },
 {
 'velocities': vitesse,
 'conserved_moments': qy,
 'polynomials': polynomes,
 'relaxation_parameters': s_q,
 'equilibrium': [qy, qy*qx/h, qy**2/h + 0.5*g*h**2, 0.],
 },
],
 'parameters': {LA: la, g: 1.},
}

s = pylbm.Scheme(d)
print(s)

Three elementary schemes have been built, these three schemes are identical
except for the equilibrium values of the non conserved moment and of the relaxation parameter:
The first one is used to simulate the equation on \(h\) and the others
to simulate the equation on \(q_x\) and \(q_y\).
For each scheme, the equilibrium value of the non conserved moment is equal
to the flux of the corresponding equation: the equilibrium value of the kth scheme
can so depend on all the conserved moments (and not only on those of the kth scheme).

\[\renewcommand{\DdQq}[2]{{\mathrm D}_{#1}{\mathrm Q}_{#2}}
\renewcommand{\drondt}{\partial_t}
\renewcommand{\drondx}{\partial_x}
\renewcommand{\drondtt}{\partial_{tt}}
\renewcommand{\drondxx}{\partial_{xx}}
\renewcommand{\drondyy}{\partial_{yy}}
\renewcommand{\dx}{\Delta x}
\renewcommand{\dt}{\Delta t}
\renewcommand{\grandO}{{\mathcal O}}
\renewcommand{\density}[2]{\,f_{#1}^{#2}}
\renewcommand{\fk}[1]{\density{#1}{\vphantom{\star}}}
\renewcommand{\fks}[1]{\density{#1}{\star}}
\renewcommand{\moment}[2]{\,m_{#1}^{#2}}
\renewcommand{\mk}[1]{\moment{#1}{\vphantom{\star}}}
\renewcommand{\mke}[1]{\moment{#1}{e}}
\renewcommand{\mks}[1]{\moment{#1}{\star}}\]

Analyze your scheme

Two of the biggest problems encountered when starting to use lattice Bolzmann methods are

	what are the physical equations we’re trying to solve?

	how to set the parameters of the scheme (equilibrium values, relaxation parameters,…) so that it is stable and solves what you want?

pylbm tries to give you some ideas to solve them.

For the first one, pylbm can give you the first and second order coefficients of your physical equation (in a next release, it will be possible to have also the third and the fourth order terms). To have better results, it is important to keep SymPy symbols in your scheme as long as possible. Thus, we can see the influence of theses parameters on the physical equations.

For the second one, once you know that you have the good physical equation, pylbm allows to check the linear stability region for these parameters arround a given linearized state. We provide widgets inside a notebook or for a Python script to modify easily these parameters and show the result on the figure interactively.

We believe that these two tools will make it easier for as many people as possible to become familiar with the lattice Boltzmann methods and, in the end, allow them to implement their own schemes.

Let’s take a simple example to illustrate how it works.

Assume that you want to solve the advection equation for 1D problem

\[\begin{split}\begin{aligned}
&\drondt u = c \drondx u, && t>0, \quad x\in(0,1),\\
&u(t=0,x) = u_0(x), && x\in(0,1) \\
&u(t,x=0) = u(t,x=1), && t>0.
\end{aligned}\end{split}\]

And you already have a lattice Boltzmann scheme that you want to try: the \(\DdQq{1}{3}\) scheme given by

	three velocities \(v_0=0\), \(v_1=1\), and \(v_2=-1\), with associated distribution functions \(\fk{0}\), \(\fk{1}\), and \(\fk{2}\),

	the scheme velocity \(\lambda\),

	the three moments

\[\mk{0}=\sum_{i=0}^{2} \fk{i}, \quad \mk{1}= \sum_{i=0}^{2} v_i \fk{i}, \quad \mk{2}= \frac{1}{2} \sum_{i=0}^{2} v_i^2 \fk{i},\]

and their equilibrium values \(\mke{0}\), \(\mke{1}\), and \(\mke{2}\),

	and finaly the two relaxation parameters \(s_1\) and \(s_2\) lying in \([0,2]\).

We can write this scheme into pylbm as

[1]:

import sympy as sp

Symbolic variables definitions
U, X = sp.symbols('u, X')
C, LA, S0, S1 = sp.symbols('c, lambda, s_0, s_1', constants=True)

The D1Q3 LBM scheme
adv_scheme = {
 'dim': 1,
 'scheme_velocity': LA,
 'schemes': [
 {
 'velocities': list(range(3)),
 'conserved_moments': U,
 'polynomials': [1, X, X**2/2],
 'relaxation_parameters': [0., S0, S1],
 'equilibrium': [U, C*U, C**2*U/2],
 },
],
 'parameters': {LA: 1,
 S0: 1.9,
 S1: 1.9,
 C: 1},
}

Let’s create the scheme and look at the information given by pylbm

[2]:

import pylbm

scheme = pylbm.Scheme(adv_scheme)

[3]:

print(scheme)

+--------------------+
| Scheme information |
+--------------------+
 - spatial dimension: 1
 - number of schemes: 1
 - number of velocities: 3
 - conserved moments: [u]

 +----------+
 | Scheme 0 |
 +----------+
 - velocities
 (0: 0)
 (1: 1)
 (2: -1)

 - polynomials

 ⎡1 ⎤
 ⎢ ⎥
 ⎢X ⎥
 ⎢ ⎥
 ⎢ 2⎥
 ⎢X ⎥
 ⎢──⎥
 ⎣2 ⎦

 - equilibria

 ⎡ u ⎤
 ⎢ ⎥
 ⎢c⋅u ⎥
 ⎢ ⎥
 ⎢ 2 ⎥
 ⎢c ⋅u⎥
 ⎢────⎥
 ⎣ 2 ⎦

 - relaxation parameters

 ⎡0.0⎤
 ⎢ ⎥
 ⎢s₀ ⎥
 ⎢ ⎥
 ⎣s₁ ⎦

 - moments matrices

 ⎡1 1 1 ⎤
 ⎢ ⎥
 ⎢0 λ -λ⎥
 ⎢ ⎥
 ⎢ 2 2⎥
 ⎢ λ λ ⎥
 ⎢0 ── ──⎥
 ⎣ 2 2 ⎦

 - inverse of moments matrices

 ⎡ -2 ⎤
 ⎢1 0 ───⎥
 ⎢ 2⎥
 ⎢ λ ⎥
 ⎢ ⎥
 ⎢ 1 1 ⎥
 ⎢0 ─── ── ⎥
 ⎢ 2⋅λ 2 ⎥
 ⎢ λ ⎥
 ⎢ ⎥
 ⎢ -1 1 ⎥
 ⎢0 ─── ── ⎥
 ⎢ 2⋅λ 2 ⎥
 ⎣ λ ⎦

We can see here that we have described one scheme with three 1D velocities. The moment matrix gives how to find the moments from the distribution functions.

Let’s check now if we solve the good physical equations.

[4]:

pde = pylbm.EquivalentEquation(scheme)

[5]:

print(pde)

+----------------------+
| Equivalent Equations |
+----------------------+
 The equation is

 d d ∂ ⎛ d ⎞
 ──(Fx) + ──(U) = ──⎜Bxx⋅──(U)⎟
 dx dt ∂x⎝ dx ⎠

 where

 U = [u]

 Fx = [c⋅u]

 Bxx = [0]

pylbm gives the first and second order terms. In the next release, you will also have access to the third and fourth terms. Our scheme solves the advection equation as exepected.

We can now study the stability of this scheme. Many notions of stability exist and can be used. In pylbm, we focus on a linear notion by computing the eigenvalues of the linear operator corresponding to one time step. The scheme will be considered as stable if all these eigenvalues stay inside the unit circle (as complex values). This notion is sufficient for linear scheme but just gives partial informations for non-linear scheme.

[6]:

stab = pylbm.Stability(scheme)

linearization around a state
uo = 1.

stab.visualize(
 {
 'linearization': {
 U: uo,
 },
 'parameters': {
 LA: {
 'range': [1, 20],
 'init': 1,
 'step': .1
 },
 U: {
 'range': [0, 20],
 'init': uo,
 'step': .1
 },
 C: {
 'range': [0, 20],
 'init': 1,
 'step': .1
 },
 S0: {
 'range': [0, 2],
 'init': 1.9,
 'step': .1
 },
 S1: {
 'range': [0, 2],
 'init': 1.9,
 'step': .1
 },
 },
 'number_of_wave_vectors': 1024,
 }
)

