pylbm is an all-in-one package for numerical simulations using Lattice Boltzmann solvers.

pylbm is licensed under the BSD license, enabling reuse with few restrictions.

Getting started

pylbm can be a simple way to make numerical simulations by using the Lattice Boltzmann method.

To install pylbm, you have several ways. You can install it using conda

conda install pylbm -c pylbm -c conda-forge

or using the last version on Pypi

pip install pylbm

You can also clone the project

git clone https://github.com/pylbm/pylbm

and then use the command

python setup.py install

or if you don’t have root privileges

python setup.py install --user

Once the package is installed you just have to understand how build a dictionary that will be understood by pylbm to perform the simulation. The dictionary should contain all the needed informations as

To understand how to use pylbm, you have a lot of Python notebooks in the tutorial.

Documentation for users

Documentation of the code

The most important classes

Geometry(dico) Create a geometry that defines the fluid part and the solid part.
Domain([dico, geometry, stencil, …]) Create a domain that defines the fluid part and the solid part and computes the distances between these two states.
Scheme(dico[, stencil, check_inverse]) Create the class with all the needed informations for each elementary scheme.
Simulation(dico[, domain, scheme, sorder, …]) create a class simulation

The modules

References

[dH92]D. D’HUMIERES, Generalized Lattice-Boltzmann Equations, Rarefied Gas Dynamics: Theory and Simulations, 159, pp. 450-458, AIAA Progress in astronomics and aeronautics (1992).
[D08]F. DUBOIS, Equivalent partial differential equations of a lattice Boltzmann scheme, Computers and Mathematics with Applications, 55, pp. 1441-1449 (2008).
[G14]B. GRAILLE, Approximation of mono-dimensional hyperbolic systems: a lattice Boltzmann scheme as a relaxation method, Journal of Comutational Physics, 266 (3179757), pp. 74-88 (2014).
[QdHL92]Y.H. QIAN, D. D’HUMIERES, and P. LALLEMAND, Lattice BGK Models for Navier-Stokes Equation, Europhys. Lett., 17 (6), pp. 479-484 (1992).

Indices and tables